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ABSTRACT

A linearized, global spectral model with eight levels was used to determine

whether the nonlinear interaction between a planetary-scale wave (waveumber

four) and a rapidly growing synoptic-scale wave (wavenumber seven) could

produce a northeasterly wind, characteristic of East Asian cold surges. The

amplitude of the synoptic-scale wave, or generic cyclonc, was produced by a

nonlinear Eady model of the atmosphere that included friction. The resulting

nonlinear forcing was applied to either the first law of thermodynamics, the

vorticity equation, or both.

The thermal forcing did not produce a significant cold surge response. The

vorticity forcing produced a respectable cold surge within 48 hours. The results of

this study indicate the planetary-synoptic wave interaction is a possible method for

initiating East Asian cold surges.
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I. INTRODUCTION

The monsoon is a three-dimensional, planetary scale wind regime that exhibits

a strong seasonal dependence. According to the Glossary of Meteorology

(Huschke, 1959), "the primary cause (of the monsoon) is the much greater annual

variation of temperature over large land areas compared with neighboring ocean

surfaces, causing an excess of pressure over the continents in the winter and a

deficit in summer." The variation in temperature results from the position of the

sun during each season. The shapes of the continents and their variable

topographies produce considerable regional and temporal variability of monsoons.

The northeasterly monsoon that occurs in East Asia during the winter is one of

the most energetic circulations of the atmosphere. Even though the regional

characteristics of the winter monsoon occur in East and Southeast Asia, the

influence on other components of circulation can reach global scales (Lau and

Chang, 1987). Because of the large scale effects on the atmosphere, the East Asian

winter monsoon has been an area of active research. Recent areas of investigation

include the role of the East Asian winter monsoon in midlatitude-tropical and inter-

hemispheric interactions, monsoonal variations, and the forcing mechanisms

responsible for small scale monsoonal variations.

The East Asian winter monsoon is associated with the thermally direct Hadley

circulation, or cell. that occurs over the area in winter. The ascending branch of

the Hadley cell, and major monsoonal convective zone, migrates from its

summertime position over India to the maritime continent of Borneo/Indonesia

(Ramage, 1971 ). The latent heat released in the upper levels, due to intense

convection over the maritime continent, is transferred poleward. The cold



Siberian high pressure system, or anticyclone, is the heat sink area for the upper-

level poleward moving warm air. The Siberian anticyclone, in conjunction with

the descending branch of the Hadley cell, produces a large area of subsidence, and

thus dominates the Southeast Asian winter (Ramage, 1971). The Himalayas block

the southward movement of extremely cold surface air from the Siberian

anticyclone. The only effective outflow region is to the southeast.

Boyle and Chen (1987) documented the wintertime surface and 20 kPa wind

fields for the period 1973 to 1984. The predominant northeasterly flow, at the

surface, associated with the East Asian winter monsoon is shown in Fig. 1.1. The

blacked out regions correspond to terrain heights above 1000 m. A vector length

of 5* longitude corresponds to a ten meters per second wind, and the isotach

contour interval is 2.5 m-s- 1. The intense subtropical jet stream over Southeast

Asia, shown in Fig. 1.2, is caused by the intense baroclinic zone between the warm

tropics and frigid Siberian area. A wind vector length of 5° corresponds to a 100

m-s -1 wind, and the isotach interval is 10 m-s- 1. The climatological averaged

January 50 kPa geopotential height and wind field (Fig. 1.3) shows a dominant long

wave trough centered over the Sea of Japan.. The contour interval is 80 m.

2Mli l na



60* N

s0' N

90OE Io'E 130* E 160 E 170 E

Figure 1.1. Average Wintertime Surface Wind (Boyle and Chen,

1987)
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Figure 1.3. Climatological January 50 kPa Height Field (Boyle and
Chen, 1987)

The Hadley circulation, and the effect of the Himalayas, set up the planetary

circulation of the winter monsoon. However, Boyle and Chen (1987) indicate that

transient synoptic-scale waves shape the final form of the Siberian High. As

synoptic waves propagate along the longwave trough, surface cyclones and

anticyclones develop due to the intense baroclinicity. Cyclones usually develop off

the west coast of Japan in the area of strong upper-level positive vorticity advection

and low-level warm air advection, and track to the northeast. Anticyclones develop

near the southern extent of the Siberian High, due to the upper-level negative

vorticity advection and low-level cold air advection, and track toward the

southwest over China. When the pressure gradient between the China anticyclone

and the cyclone off Japan tightens rapidly, significant ageostrophic motion results.

The cross-isobaric ageostrophic flow accelerates toward lower pressure near the

cyclone to the east and to the Intertropical Convergence Zone (ITCZ) to the south.

The northeasterly cold wind is the "cold surge" in the winter monsoon. Cold surges
X
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usually reach the equatorial South China Sea in 12 to 24 hours. The enhanced

northerly flow intensifies the tropical convection over the maritime continent, and

thus strengthens the Hadley circulation. The cold surge ends when the midlatitude

trough-ridge pattern moves far enough east to diminish the China anticyclone, and

consequently the pressure gradient. Boyle and Chen (1987) emphasize that cold

surges are caused by the interaction of synoptic and planetary waves. They

conclude that cold surges are dynamically forced, and thus must be considered

separate entities from the Siberian anticyclone.

The East Asian cold surge has two stages. They are separated by a few hours to

one day, depending on the location of the observing site (Lim and Chang, 1981;

Chang et al., 1983). The first stage is the pressure surge. It is the leading edge of

the air accelerating towards the equator. The pressure surge propagates with the

speed of internal gravity waves. The second stage is a frontal passage that moves

with advective speeds. It is defined by a sharp decrease in surface temperature and

dew-point temperature.

The onset of the East Asian cold surges are defined in many ways (Boyle and

Chen, 1987). The three most common definitions are: 1) A drop in surface

temperature at Hong Kong of five degrees Celsius, or more, 2) An increase of the

surface pressure gradient between coastal and central China of at least 0.5 kPa; and

3) A prevalent northerly surface flow over the South China Sea with speeds

exceeding five meters per second(Lau and Chang, 1987).

The cause or nature of East Asian cold surges has been examined by Lim and

Chang (1981), Baker (1983), Bashford (1985) and Harris (1985). Lim and

Chang (1981) used linearized shallow-water equations on an equatorial beta-plane

to simulate the response of the tropics to a midlatitude pressure surge. They did not

5



include planetary boundary layer friction or orography. Lim and Chang (1981)

found that synoptic scale forcing in the midlatitudes produced Rossby-type waves

that propagated into the tropics. The northeast-southwest tilt in the pressure field,

typical of Rossby waves, and the northeasterly flow similar to cold surge events is

shown in Fig. 1.4.

. - . ...... .
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Figure 1.4. Wind Velocity Vectors for a Barotropic Model (Lim and
Chang, 1981)

Baker (1983) used a global, six-layer, primitive equation model to examine the

interaction of a midlatitude baroclinic wave with topography. Baker's results

indicated that well developed baroclinic waves could initiate a cold surges, but the

surges were limited, and weak. Baker concluded that other forcing mechanisms

were required to simulate cold surges.

Bashford (1985) used an eight-layer, spectral, primitive equation model with

an analytical heat source to study the effects of planetary scale motion on cold

surges. The heat source function of Bashford's baroclinic model were similar to

that used by Lim and Chang (1981) in their barotropic model. Bashford found that

a planetary wave (wavenumber three) with a deep thermal forcing could produce a

cold surge response.

6
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Harris (1985) used the same model as Baker (1983) to study the interaction of a

baroclinic wave (wavenumber eight) with a planetary wave (wavenumber four).

Harris found the synoptic wave alone did not produce a cold surge, but the

synoptic-planetary-wave interaction produced a significant cold surge response.

Harris' results may be tainted because the planetary wave extended unrealistically

far south.

This study will use a global, eight-layer, primitive equation model, and will be

conducted in three phases. The first phase will examine the effect of a forcing with

a single frequency derived from a forced Rossby wave, midlatitude beta-plane

solution. The second phase will repeat Bashford's (1985) experiment with an

impulse forcing that includes a spectrum of frequencies. This effort will attempt to

reproduce the results of Lim and Chang (1981). The third phase will examine the

interaction of a planetary wave (wavenumber four) with a synoptic wave

(wavenumber seven). The synoptic wave, or generic cyclone, will be produced by

a nonlinear Eady model of the atmosphere (Peng, 1982). The basic state or mean

flow of the planetary wave, and the phase speed of the synoptic wave, are both equal

to zero. Instead of combining the two waves together within the global model, as

done by Harris (1985), this study will compute the nonlinear interactions

analytically. The resulting wave (wavenumber three) is used in the linear, global

model. To aid in the analysis of each experiment, the solutions from the global

model will be projected onto the vertical normal modes.

7



II. SIMPLE BETA-PLANE SOLUTION

Since the baroclinic, primitive equation model used in this study is linear, and

the mean or basic flow is zero, the full baroclinic atmosphere can be represented by

the sum of vertical normal modes. The behavior of each vertical mode solution is

similar to a barotropic shallow water system with the appropriate mean, or

equivalent, depth (Lim and Chang, 1987). In other words, each mode of the

baroclinic system will behave like a shallow water system. To simulate the

variation in the Coriolis parameter, and simplify the mathematics, the system of

shallow water equations is solved on a midlatitude beta-plane. The validity of using

a midlatitude beta-plane is discussed by Lindzen (1967).

The scaled shallow water equations on the midlatitude beta-plane. with a

forcing function added to the continuity equation, are:

--+ vW.V' +griD =- g---S
fo (2.1)

-+ v.v(;+ oy)+ foD .0
(2.2)

V 2'- f=0 (2.3)

where:

-' perturbation in the geopotential height field

- geostrophic streamfunction

H - mean (basic) height field or equivalent depth

D - divergence

V - two dimensional wind velocity vector

8



- vorticity

fo - Coriolis parameter (constant)

t - time

13o - gradient of Coriolis parameter in the north-south direction

y - north-south position

S - forcing function

If the vorticity is assumed geostrophic, then = V24f, and Eq. 2.3 yields Vy=

'/fo or 0' = foxg. When 0' is introduced into Eqs. 2.1 and 2.2, and the nonlinear

terms are eliminated, Eqs. 2.1 and 2.2 become:

fo- +grD S
fo (2.4)

+ + foD =0

(2.5)

When the divergence is eliminated between Eqs. 2.4 and 2.5, the

quasigeostrophic potential vorticity equation results:

Axv + POo =s
at g & S (2.6)

Eq. 2.6 is solved by writing the streamfunction and forcing function as follows:

V= I(y) e i(Kx - (00 (2.7)

S=is(y) ei(K x - (0) (2.8)

where K is the dimensional wavenumber, and o is the frequency. The latitudinal

structure of the forcing function is:

9



S~C) 2W~ '
0 Iyj>W (2.9)

where So is the magnitude of the forcing, and W is half of the width of the forcing

in the north-south direction.

When Eqs. 2.7 and 2.8 are substituted into Eq. 2.6, the following ordinary

differential equation results:

dq' + PX2p s(y)
dy2  W (2.10)

where:

a2=_K2 _ fo K[0
gFI co(2.11)

or:

-Kz

K2 +a2 + f

9H (2.12)

The homogeneous solution to Eq. 2.10 is:

S(y) = e t ii y  (2.13)

Since the latitudinal structure is symmetrical about y = 0, Eq. 2.10 will only be

solved for lyl _< -W and y < -W. When y < -W, the negative exponent of Eq. 2.13

is used, and when y > W the positive exponent is used. If (X2 > 0, the particular

solution to Eq 2.10 for the interval lyl < W is:

2a2  2 a 2 - ( 12
W (2.14)

10



When Eqs. 2.13 and 2.14 are combined, the general solution (with aX2 > 0) is:

T (Y)= (++ 00 - +CI(eiy+e -i Y) yI5W2 a 2  
-( L

(2.15)

T(y) = C2e-i aY Y < -W (2.16)

Since a2 > 0, (x can be positive or negative. When c > 0, the solution to Eq. 2.16

will have a north-south phase structure that tilts from the northeast to the southwest

for y < -W. A northeast-southwest tilt in phase structure will propagate energy

away from the source region. This can be shown by applying a radiation condition

which requires that the wave have a group velocity moving away from the source.

If a < 0, the solution to Eq. 2.16 will have a phase structure that tilts from the

northwest to the southeast, and will propagate energy toward the source region.

For the region y > W, a < 0 will produce a northwest-southeast tilt in the phase

structure, and propagate energy northward away from the source region.

The two constants are determined by equating Eqs. 2.15 and 2.16, and also

equating their derivatives, at y = -W. When Eqs. 2.15 and 2.16 are substituted into

the real part of Eq. 2.10, the complete propagating solution is:

2 a2

2--I , y)cos (Kx + aW - o t) yI<W

W (2.17)

T, =S~sin (oaW)__L - I sin (Kx + aty- a) t) Y < -W

2 (a2 a2..(LI
2(2.18)
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If oX2 < 0 and oa2 = --2, Eq. 2.10 becomes:

=_T L s(y)
dy 2  (0 (2.19)

and Eq. 2.11 becomes:

42=K2+ 10 + K 0

gH C (2.20)

The homogeneous solution of Eq. 2.19 is:

TP(y) = e - V) (2.21)

and the particular solution for lyl 5 W is:

2g~2 2 + (7C 2

(2.22)

When y < -W, the positive exponent of Eq. 2.21 is used.

When Eqs. 2.21 and 2.22 are combined, the general solution (with a 2 < 0 or

i2 > 0) is:

T (y) =_--SQ 1.+ W__.._ /+Cl(eP)y+e.P)y)  lyl<5W
2!2 J'2+(2.23)

T (y) = C2e PY y < -W (2.24)

Since pL2 > 0, W can be positive or negative. When p > 0, the solution to Eq. 2.24

will trap energy near the source. If p < 0, then the solution would grow to infinity

for large lyl.

12



The constants can be solved in the same manner as used to get Eqs. 2.17 and

2.18. When Eqs. 2.23 and 2.24 are substituted into the real part of Eq. 2.10, the

complete trapped solution is:

2 1 1211 +(, ()2

e llwcosh -j) 12)] cos (Kx -ro) I
+ W I (2.25)

%Iw =SS i W 1 -- ePiYsin (Kx _ - t) y<-W
2 2 _+_

2 w , (2.26)

The derivation above indicates that under certain conditions, or frequencies.

the solution to the shallow water equations can either propagate energy away from

the source region, or trap energy near the source. The experiments in Phase I will

examine the effects of forcing the primitive equation model with a variety of

frequencies.
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Ill. MODEL DESCRIPTION

The model used in this study is a baroclinic spectral transform primitive

equation model as described by Haltiner and Williams (1980), and used by McAtee

(1984). The model discussion of this chapter is taken directly from McAtee. The

model is configured to include friction, diabatic heating and a vorticity forcing.

The specifics of how diabatic heating and vorticity are included in the model will

be discussed in the next section. Friction is not included in this study. The basic

equations of the model, in sigma coordinates, are as follows:
ar.aD

=-V( +f)V k.Vx(RTVq (3.1)

-D IV W - ' _+7

-D = k V x ( + 0f)V- V. RTVq + 6- V + +VF
2 2 (3.2)

cY-D-V.Vq -
a cao (3.3)

dro (3.4)

_ RT
o (3.5)

where:

- vorticity

D - divergence

T - temperature

t - time

14



0 potential temperature

H surface pressure

V horizontal velocity vector

- geopotential height

R gas constant

Cp - specific heat at constant pressure

f - Coriolis parameter

o - vertical coordinate (Y = P -PT)
H-- PT

dc
- vertical velocity (d = T-)

q - In(P)

P - pressure

PT - pressure at the top of the model

F - frictional force

Q - diabatic heat forcing function

A - vorticity forcing function

The continuity equation (3.3) is rewritten by integrating with respect to sigma.

and applying the boundary conditions d (0) = d (1) = 0.0. Thus the integral of

Eq. 3.3 may be written:
&l =_D+ G

a (3.6)

where:
i

()= fo( )d c

G=V.Vq

15



The vertical velocity, &, is derived diagnostically by substituting Eq. 3.6 into

Eq. 3.3, integrating in the vertical, and using d (0) = 0.

a=D )-(D+ Gk a
f (3.7)

The first law of thermodynamics, Eq. 3.4, is written:

=T V-V -c 6 T c+ xT k +V.Vq +Q
(3.8)

where ic equals R/Cp. To apply semi-implicit differencing. it is necessary to divide

the temperature into parts as follows:

T = T*() + T(G,,p,t) (3.9)

where:

T* - appropriately averaged temperature

T' - perturbation temperature

. - longitude

(P - latitude

The basic equations are conveniently written in spherical coordinates by

defining the following operator:

c a,b)= I + d -
COS2 (p aO,^ Cosq D) (3.10)

Using Eqs. 3.9 and 3.10, the basic equations can be written as follows:

t (3.11)

D=a(A)- V2(E+ + RT*q)
&1 (3.12)
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-IT =- (UT',VT) + DT - o 6( T°- x) + T (G-G-D)+Q
at Do (3.13)

a D+(3.14)

-a -" =RT (3.15)

where:

*av Rt -, COS _

A=( +f~jd +a~+ r2 COS2p r Fq,

B=(t+f)V-d- _RT &+ CS P F
T49 r2 aX r;

G= U +V I aq
C2 P~ (p O Pa(p

E=U
2 + V 2

2cos p

V COS (P

r

and:

u zonal component of the velocity vector (V)

v meridional component of the velocity vector (V)

r - mean radius of the Earth

Eqs. 3.10 through 3.15 are the basic equations used in the model. These equations

are represented spectrally in the horizontal and finite differenced in the vertical.
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A. VERTICAL STRUCTURE

The vertical structure of the model follows the development given by Arakawa

and Suarez (1983). The variables are staggered in a so that , D, U, V and T are

carried at the mid-point of each layer, where a =6k. The variable d is carried at the

top and bottom of each layer, where a = k. The vertical structure is illustrated in

Fig. 3.1. The finite difference form of Eqs. 3.10 through 3.15 are:

-= - k(AB) + Ak
(3.16)

Dk - ak(B,- A)-VAPk + RT*q + Ej)
at (3.17)

(3.18)

aTk= (u,v) + (
at k(TXGD

16Yk+IB Pk Tk+l - Tk)+kAk-lTk Pk Tk-1I+Q
AUD k+1 k-1(3.19)

Ok- Ok+1 = CSPk+l- Pk)(AkTk + BkTk+1 (
k Pk+ 1 (3.20)

O LM = O S + CPTLM [p W - ILPLM( 3.21)

k
6k+I = qk+lG + D)- I (Gj + Dj)a j

j=1 (3.22)

where:

Gk+1 - Gk
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A=( +f)Uk + k+1(Vk+1 Vk)-iay Vk.1)+ JRlkcos2(p ____ __p

2Aayk r 2  fcs p 'rr

B=( +f)Vk + k+(Uk+l Uk)±6Tk(Uk-Uk-1) lCpRrk I oj (POO ir

G= Vk'V
I-I

D = VVk

AK= P-Pk
Pk+1 - Pk

Bk Pk+] -Pk Il Ak
Pk+l - P
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Figure 3.1. Vertical Structure of the Primitive Equation Model

Eqs. 3.16 through 3.22 are written in matrix form, sc the terms on the right

hand sides contain all the terms that are to be evaluated explicitly, and the terms on

the left hand sides contain those terms that are to be evaluated implicitly. Eq. 3.20

is combined with an integrated finite difference form of Eq. 3.15 to obtain:

) =j CIT + Os (3.23)

where ICI is a square matrix and the other quantities are column vectors. The finite

difference form of the surface pressure tendency equation, Eq. 3.14, is

Iq (Gk + D,)ck
(3.24)

which can be written in matrix form as:
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:-NT(G +D)
I(D(3.25)

where NT is the transpose of a constant column vector. Similarly, Eq. 3.22 is

written:

6=Z(G+D) (3.26)

The next to last term in Eq. 3.19 is:

ck+jBq-P-'-.Tk+1 - Tk) +aTkAk-I(Tk- k Tk-l) 3.7

For the purpose of semi-implicit formulation, the temperature is separated

according to Eq. 3.9. The mean part of that term is written:

tok+lBk(PI Tk*+1 - Tk)+dkAk 1(Tj Ph ) MI (0+ D)(.8PkIPk-I (3.28)

Eqs. 3.17, 3.19, 3.23 and 3.25 are now written:

aD +V2p ,
at (3.29)

l+NTD = NTG
at (3.30)

-T+1 QID=KT
a (3.31)

4'=ICI T (3.32)

where IQI = IMI + wT*NT and O,'= -, - Os. The variables KD and KT represent terms

that are not explicitly separated out.

The semi-implicit time differencing is achieved by evaluating the terms on the

left hand sides of Eqs. 3.29 through 3.31 implicitly. The remaining terms and
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Eq. 3.32 are evaluated explicitly using leapfrog differencing. The difference

equations are written:

Dn+1 + AtV2( C rn+i +IRI T*qn+)=

Dn- AtV2C I Tn-1 +I RI T*qn-1)+2At(KD)n (3.33)

Tn+j + At 11Q 1 Dn+l = Tn-j- At IQ I Dni-l- 2At (K4~ (3.34)

qn+l + AtN TD = qn-1 -At NT Dn-1 -2At NT Gn (3.35)

Now, the following equation for D is found by substituting Eqs. 3.34 and 3.35 into

Eq. 3.33:

B-Dn+ = B+Dn-1 + 2At(KDAn- 2AtV C E Tn-1 +1 RI T*qn-1 +1 CI (KTWn)-

IRI T*NTGn (3.36)

where the matrix operator B is:

B_ -=At CI Q I±I R TNT)VI +11! (3.37)

and III is the identity matrix.

B. SPECTRAL FORMULATION

The equations 3.10 through 3.15 are represented spectrally in the horizontal.

The variables are represented as follows:

J I I J

m=-J n mI m=-J n=m (3.38)

where C is some variable, and:

an =- r C2im
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where m is the zonal wavenumber, n is the meridional index, and n - Iml give" the

number of zeros between the poles (-1 < sin (p < 1) of the associated Legendre

function. Triangular truncation is used in this study, with the truncation limit, J,

equal to three. The non dimensional zonal coordinate index, X, equals (s - 1)/2

where 1 < s < 16. Note that the separation is such that the coefficients Cm are

functions of time and the vertical and spherical harmonic Y are horizontal

functions of space. The normalization and orthogonal properties of Y' allow the

coefficients to be obtained as follows:
21 f+1

O CY'ndepdX
T~f0 (3.39)

The nonlinear terms are computed using the transform method following Haltiner

and Williams (1980). The longitudinal direction is treated with a Fast Fourier

Transform and the latitudinal direction uses Gaussian Quadrature. The number of

latitudes, N, and longitudes, M, satisfy: N > 3J/2 + I and NI > 3(J - 1) + 1. For this

study, N = 60 and M = 48.
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IV. FORCING FUNCTIONS

Chapter III of this paper describes the global spectral model. The vorticity

equation (3.1) and the thermodynamic equation (3.4) use forcing functions, A and

Q, respectively. This chapter describes the forcing functions.

A. PHASE I - ROSSBY WAVE FORCING

The thermal and vorticity forcing of Phase I follows the development of

Chapter II. The forcing function is:
F= (FA)(FS)(F9)(FR) (4.1)

where FA is the amplitude of either the thermal or vorticity forcing. The vertical

structure (Fs), shown in Fig. 4.1, is:

(1.0- FA) sinh2 C 2  >

FS = sinh 1.0
tamnh 'F(-- 13<m

tanh 1.0 (4.2)

where FAO is the amplitude of either forcing at the surface (for this study FAO = 0.),

and:
13LO = 49 - 13n=

1.0- Oa,€ (4.3)

(T - Chmin
3max - Gmin (4.4)
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Figure 4.1. Vertical Structure of Forced Rossby Wave Solution

The meridional structure (FqP) is:

SYN-YS (4.5)

where (p is the latitude, and YN - YS is the north-south period of forcing.

The development in Chapter II uses a cos 2 latitudinal function, where the actual

latitudinal forcing of the model is sin 2. The difference is insignificant. The forcing

is equal to zero in the Southern Hemisphere, and outside of the latitudinal limits in

the Northern Hemisphere (Fig. 4.2).
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Figure 4.2. Latitudinal Structure of Forced Rossby Wave Solution

The amplitude, vertical and latitudinal components of the forcing function

discussed so far are similar to Bashford (1985). Both the temporal and longitudinal

structure of the forcing functions are included in the function FR shown below:

XE-XW (4.6)

where Xw - XE is the East - West period of forcing, and X is the longitude. The

frequency (co) is given by Eq. 2.11.

B. PHASE II - IMPULSE FORCING

Bashford (1985) used an impulse forcing in the thermal equation similar to

Lim and Chang (1981). In this study the impulse is also added to the vorticity

equation. Since this impulse forcing includes a spectrum frequencies, it is more

realistic than the single-frequency forcing described in Phase I. The impulse

forcing is given by:
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F= (FA)(Fs)(F )(Fx)(FT) (4.7)

where FA, FS, and Fp are the same as Phase I. The longitudinal part (Fk) is the

same as Phase I, but it is separate from the temporal function. The impulse is

generated by the temporal function (FT):
2 j.

Fr = 1' e-r
2T3  (4.8)

where t is time and r is the time scale. The impulse peaks at t = 2T and then decays

exponentially to zero. The solutions in this study use r = .5 day, so the peak of the

impulse occurs at one day (Fig.4.3).
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01
a I 2 .3 4 6 7 6 1 10

TIME (DAYS)

Figure 4.3. Temporal Structure of the Impulse Forcing
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C. PHASE III - GENERIC CYCLONE FORCING

1. Thermal Forcing

The thermal forcing from the generic cyclone represents the nonlinear

advection of the synoptic temperature field by planetary waves, and vice versa.

The nonlinear advection terms are given below:

Q = - VLVTs - VS'VTL (4.9)

where:

VL - two dimensional planetary wind vector

Vs - two dimensional synoptic wind vector

TL - planetary scale temperature field

Ts - synoptic scale temperature field

Eq. 4.9 is written in scalar form as follows:

Q=UL-- --. - TS -TLVaTL

-x a &' ax (4.10)

The quasistationary geopotential height field for the planetary wave is:

0L = A(P,t)W(y)cos (KLX) (4.11)

where A(Pt) is the amplitude factor for the planetary wave (constant for this

study), and KL is the planetary wave number (for this study, KL = 4). The latitudinal

structure of the planetary wave is:

W(Y)=nYPN -YPS) (4.12)

where YPS - YPN is the north-south period of forcing for the planetary wave.

The geopotential height field for the synoptic wave is:

Os = N(y P, os (Ksx - xt)+-btP,t)sin (Ksx - vt)) (4.13)
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where a(P,t) and b(P,t) are the vertical amplitudes of the synoptic scale wave. The

functions, a(P,t) and b(P,t), represent a baroclinic wave generated from an Eady

model, to be discussed later. The value Ks is the synoptic wavenumber (for this

study KS = 7), and v is the frequency. The latitudinal structure of the synoptic-scale

wave is:

N"y sin y - Y s s ) I

YsN - YSS !(4.14)

where YSN - Yss is the north-south period of forcing for the synoptic wave.

The ideal gas law:

P=pRT (4.15)

and the hydrostatic equation:
aP

3Z (4.16)

are combined to yield:

Ts.- pa s PNI cs(Ksx -vt)+ 0_sin (Ksx -vt}l
R- al R [aP "p (4.17)

and:

TL =P L P A \Vos (KLx )
R aP RaP (4.18)

The planetary wave amplitude function, A(P,t), is constant for this study

so TL = 0 and Eq. 4.10 simplifies to:

Q=-U aTS VLS

Lx " Ly (4.19)

The planetary and synoptic vorticity fields are:
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f f KaX (4.20)

S - K2120 2N= y  N) racos (Ksx - vt) + bsin (Ksx -vt)]
f f -Iy2(4.21)

The planetary and synoptic zonal wind fields are:

Lh L =I Aff -0S(KLx)
fay f (4.22)

Us 1- -¢S _ N aocs(Ksx- vt)+bsin(Ksx- \t),
f f a (4.23)

The planetary and synoptic meridional wind fields are:

VL = I L AWKLsin {KLx)
fax f (4.24)

Vs = 1 3s _NKs - asin (Ksx- vt)+ bcos (Ksx- \'t)I

f aIx f (4.25)

When Eqs. 4.17, 4.22 and 4.24 are substituted into Eq. 4.19, and

simplified, the result is:

P A [- aW N__Kscos KLx)sin(Ksx-
Rf ay PV

-N-Kscos (KLX)cos (Ksx- vt)+

ay aP

waA-Kt'n !KLx )COS ( -SX vt)+
ay aP

WaNKLa°Sin (KLX)Sin (Ksx -vt)].
aY ip (4.26)
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Using the trigonometric identities:

sin(a-D)=sncos P-cosasinp (4.27)

cos~-p)cosaos +si otinp(4.28)

Eq. 4.26 becomes:

Q=--A [ aWT~ O so (LXXrin(KsXxcs(vt) -cos (Ksx)in (vt)) +
R f Ldiy

aW N dbK cs(KLXXOO5 (Ksx)cos (v't) + sin (Ksx)sin (x't)) +

V4-LIi (KLXXccD (Ksx~oos (vt) +sin (Ksx)sin (vt))±
dy aP

-b.- NKL- sn (KLX XSin (Ksx)cos (vt) -cos (Ksx)sin (vt))](.9

Using the trigonometric identities:

sinaoosf=i4sin(ax+3)+sin(ai3p))
2 (4.30)

cos a cosp= Y.cos ( +Pj) + cos (a-P)(431

sin asin P3= ijoos((a -1)- cos (a43))
2 (4.32)

Eq. 4.29 becomes:
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2R f [--a NkK- Scos (vt sin ((Ks + KL)x)+sin ((Ks - KL)x))-

sin (vtXcos ((Ks + KL)X) +cos ((Ks - KL)X))] +

awN a KS rcos (vtXcos ((Ks + KL)X)+cos ((Ks - KL)X))+
ay ai' L

sin (vtXsin ((Ks + KLj) + sin ((Ks - KL)x))] +

Wa-KLI s (Nvt(sin ((KL + Ks)x) -sin ((Ks - KL)X))+
ay aP [CO

sin (vt}os ((Ks - KL)X)-COs ((KS + KL)X))] +

WLN-KL-- s (vtXcos ((Ks - KL)X) -cos ((Ks + KL)X))-
ay aP LC

sin (vtsin ((KL + Ks)x) -sin ((Ks - KL)X))] (4.33

Eq. 4.33 describes the nonlinear interaction between the planetary-scale wave

(wavenumber four) and the synoptic-scale wave (wavenumber seven). The

resulting waves are wavenumber three (KS - KL) and wavenumber 11 (Ks + KL).

Since synoptic-scale waves do not propagate into the tropics (Harris, 1985).

wavenumber 11 is ignored in Eq. 4.33. The resulting equation. (4.34), is the

thermal forcing function, Q:
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Q IP -A - -Ks coCs(vt)sin((K-KLx)-sin(vtc,((Ks-KL)X) +

~iN~KS coa(t(K KL)x)-sin (t ((KS - KL)X)

W-KL - [- cos (vt)sin ((Ks - KL)X) +sin (vt)cos ((Ks - KL)X)] +

WL- KLP [cos (vt)cw ((Ks - KL)X) + sin (vt)sin ((Ks - KL)X)]]

2. Vorticity Forcing

The vorticity forcing function represents the nonlinear advection of

vorticity by both the planetary-scale and synoptic-scale waves. The nonlinear

advection terms are:

A =-VLVs -V.V j (4.35)

Eq. 4.35 is written in scalar form as follows:

a~s a~S aL ay

-U -V - (4.36)

When Eqs. 4.20, 4.21, 4.22, 4.23, 4.24, and 4.25 are substituted into

Eq. 4.36, the result is:
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A=A. aK-- - -- KSN (KLXX- asin (Ksx - %'t) +bos (Ksx -vt))+

)y ( WK N (KLxXacos (Ksx - vt) + bsin (Ksx -vt)-

aNK - 2 W (KLxXW (Ksx - vt) + bsin (Ksx -vt))-

NKS(-W - KjY}-- (KLX- asin (Ksx - vt) + bcos (Ksx -vt))
ay3 d 1(4.37)

When like terms are grouped together and the trigonometric identities in

Eqs. 4.27 and 4.28 are used to simplify Eq. 4.37, A becomes:
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AA[[WSN W

[Csn (KLx)( as (Ksx~ws (vt) + as (Ksx)sin (vt) +

bsin (Ksx~os (vt) - bos (Ksx)sin (vt))] (4.38)

Using the trigonometric identities of Eqs. 4.30, 4.31 and 4.32, Eq. 4.38

becomes:
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3 Wi=_ A[ [WKs KSN aKLW

E(-asin ((Ks + KL)x)-asin ((Ks - KL)x))Co(vt)+

(axe ((Ks + KL)X) + as ((Ks - KL)x))sif (vt) +

(txcos ((Ks + KL)X) + bcos ((Ks - KL)X))COS (Vt) +

(bsin ((Ks + KL)x) +sin ((Ks - KL)))Sin (vt) +

(as ( Ks , x-n(K- K W vt

(acs ((Ks - KL)x) - ams ((Ks + KL)X))sin (vt)+

(bzos ((Ks - KL)X)- cos ((KS + KL)X)COX (vt)-

(isin ((KS + KL)X) -b in ((KS - KL)x))sin (Vt)] ]

Eq. 4.39 describes the nonlinear interaction between the planetary wave

(wavenumber four), and the synoptic wave (wavenumber seven). The resulting

shortwave, wavenumber 11, is ignored. The final form of the vorticity forcing

function is:
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2f2 [0y , 02S ~ ay3

EI asin ((Ks - KJ)CxS (Vt)+ aCOS ((S - KJ))in (Vt) +

bo((s- KL)X)CO (V t) + bSin ((KS - KL)Sifl (V 0)] +

--& K K (a2w 2

ay 4ay 2KW

asn((Ks - KJ)OS (v't) + aCOS ((KS - KL)X)~f NOt +

bco((Ks - KL)X~ax (vt) +bsin ((Ks - KL)Sin (Vt)]I

(4.40)
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V. DESCRIPTION OF GENERIC CYCLONE MODEL

The synoptic-scale geopotential height field is given by Eq. 4.13, where the

vertical amplitudes, a(P,t) and b(P,t), are obtained from the growth of a generic

cyclone. The intensity of the generic cyclone follows the development of

midlatitude baroclinic disturbances in the atmosphere, using an Eady (1949) model.

Eady assumed the atmosphere was a frictionless, continuously stratified fluid

whose motion is adiabatic, hydrostatic and quasi-geostrophic. Eady's original

study neglected the nonlinear wave interactions.

Peng (1982) applied spectral methods to the Eady (1949) model, but included

frictional dissipation and nonlinear wave interactions. Peng found the behavior of

the baroclinic wave depended on the stratification, S, frictional dissipation, y,

supercriticality of the vertical wind shear, A, and the fundamental zonal wave

number, k. The Peng (1982) model of a baroclinic wave is used in this study to

generate the generic cyclone.

The atmosphere is considered to be an infinite channeled Boussinesq fluid with

a constant Brunt-Vaisala frequency, N. The top and bottom boundaries are rigid

walls, separated by a distance, D. The lateral boundaries are also rigid walls.
lob separated by a distance, L. The basic state is a zonal flow, U, with a constant

vertical wind shear, ?.. The quasi-geostrophic potential vorticity equation that

describes the motion is:

Ia + xz-a+J (xgq)=0

(5.1)

where:
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j(f,g)= a ag of0k

N 0 ' 'ax (5.2)

and the potential vorticity (q) is:

q = a2Wt + 2W + I_ a2__

X2 ay2 S aZ2 (5.3)

with V being the disturbance streamfunction. The vertical variable (z) ranges from

minus 1/2 at the bottom of the model, to 1/2 at the top.

The basic state stratification parameter, S, of the fluid is constant,and given by:

S= N s2 D

f2L 2  (5.4)

where:

Ns - Brunt-Vaisala frequency

D - vertical depth of the fluid

fo - Coriolis parameter

L - width of the channel

The frictional dissipation, y, is given by:
y=1

Ro (5.5)

where E, is the Ekman number, and R0 is the Rossby number.

The supercriticality of flow, A, measures the vertical wind shear in excess of

the critical vertical wind shear required for growth of the baroclinic wave, and is:

A = . -XC (5.6)

where:
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represents the marginal shear required for instability by linear theory, and:

2 (5.8)

where k is the fundamental zonal wave number. The marginal stability curve, as a

function of p, for S = .0628 is given in Fig. 5.1.

C-

,1)

CD -

U-,

C-)

I I I I I
0.00 0.25 0.50 0.75 1.00 1.25

MU

Figure 5.1. Marginal Stability Curve of Eady Model, Including
Friction

The disturbance potential vorticity (q) is equal to zero throughout the lifetime

of the cyclone in this model. Eq. 5.1 simplifies to:
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2 .2 -2
ay __+la 2=0

aX2 0y2 S z2  (5.9)

The nondimensional boundary conditions for the model are:

-=0 aty=0,1
ax (5.10)

a2-
- -- 0 at y=0,1
ay& (5.11)

V iSY- 2W +a2W =0 atz=±1/2
0-1 x & l ~ aX2 y2 /(5.12)

where 'V is the zonal average streamfunction.

Eqs 5.9, 5.10, 5.11 and 5.12 form a closed system of equations. A Fourier

series, Eq. 5.13, whose y structure satisfies Eqs. 5.10 and 5.11, is used to represent

the horizontal streamfunction field:

W= I I (Crone im" + C*mne -imp )sin nny + I Cocos nty
m n n (5.13)

where m and n are the number of zonal and meridional modes, respectively. The

complex amplitude coefficient (Cmn) of mode (m,n), and the complex conjugate

(C*mn) of Cmn, are both functions of time. Since only one baroclinic wave is used

in this study, Eq. 5.13 simplifies to:

W=(CIieikx + C+eiu)sin ny+ Icos ny (5.14)

The amplitude coefficients, C,1 , C' 11, and C01 are determined by substituting

Eq 5.14 into Eqs. 5.9, 5.10, 5.11 and 5.12. The system of equations is integrated in

time using a fourth order Runge-Kutta method (Peng, 1982). The vertical
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amplitude coefficients, a(Pt) and b(P,t), in Eq. 4.13 are related to the amplitude

coefficients of Peng by:

C1I = acosh (z)+ bsinh pLz) (5.15)

The variables a and b are determined by solving Eq. 5.15 at z = ± 1/2.

The nondimensional coefficients a and b are made dimensional by multiplying

the them by 4 000 000 m (the characteristic length scale of the Eady model), 40

m-s-1 (the characteristic velocity scale), and .000 1 s-I (the Coriolis parameter at
450 N).
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VI. ANALYSIS OF RESULTS

A. NORMAL MODE ANALYSIS

The solutions of all three phases of this study will be analyzed using the vertical

normal modes of the primitive equation model. Gill (1982) provides a good

general discussion of normal mode analysis, and Lim and Chang (1987) derive the

vertical modes of a shallow water equation model solved on an equatorial beta-

plane.

The vertical normal modes of the primitive equation model used in this study

are displayed in Figs. 6.1 to 6.8. There are eight vertical modes, consistent with the

eight levels of the model. The first mode does not have a zero-crossing. and is

considered a barotropic mode. The second mode has one zero-crossing. Since the

amplitude of the second mode changes sign in the vertical, it is considered the

baroclinic mode (Lim and Chang, 1987). The higher modes have successively

more zero-crossings. The solutions to the primitive equation model at each level

are projected onto these vertical profiles and summed to produce the modal output.

The equivalent depth (H) of each vertical mode is provided in Table 6.1.

TABLE 6.1. EQUIVALENT DEPTH OF VERTICAL MODES

Vertical Mode Equivalent Depth, m
1 7083.1
2 209.1
3 59.7
4 28.4
5 16.1
6 9.8
7 6.2
8 3.8
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B. PHASE I RESULTS

The forcing functions of Phase I will use the development of forced Rossby

waves from Chapter II. In each experiment the forcing is applied between 24* N

and 36* N, and the model is integrated forward in time for 240 hours. The

frequency (w) and corresponding period of the temporal component of the forcing

function (Eq. 4.6) are given in Table 6.2. Recall from Chapter II, that the sign of

the variable a 2 determines whether the solution to each vertical mode will

propagate away from the source region. The variable 62 , as a function of

equivalent depth and frequency, is given in Tables 6.3a and 6.3b. The a 2 values are

determined by first setting ox= K = 3.797 x 10-7 m- 1. This value of K

corresponds to wavenumber three at 30* N. The frequency is calculated for each

equivalent depth by using this value of K in Eq. 2.12. The variable a 2 is then

calculated for each frequency and equivalent depth using Eq. 2.11. Both fo and P3o
of Eqs. 2.11 and 2.12 are calculated at 30* N. When a2 > 0, the solution for that

specific equivalent depth and frequency will propagate energy away from the

source region. According to theory, only the barotropic mode (H = 7083.1 m) will

propagate energy away from the source when the frequency ((o) equals

-206.30 x 10- 7 s- 1. As the frequency (w) decreases, the higher modes have

propagating solutions.
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TABLE 6.2. ROSSBY WAVE FREQUENCY AND PERIOD OF

VERTICAL MODES

Mode Frequency ((0), s-I x 10- 7  Period, days
1 -206.30 3.5
2 -26.13 27.8
3 -8.04 90.4
4 -3.80 187.4
5 -2.22 327.4
6 -1.36 535.1
7 -0.85 853.2
8 -0.53 1382.0

TABLE 6.3A. ALPHA SQUARED (M- 1 X 10-12) FOR HIGH

FREQUENCY MODES
Frequency (co), s-1 x 10 -7

-206.30 -26.13 -8.04 -3.88
7083.1 0.14 2.60 9.14 19.18

209.1 -2.37 0.14 6.62 16.66
Equivalent 59.7 -8.85 -6.34 0.14 10.18

Depth 28.4 -18.89 -16.38 -9.90 0.14
(H), 16.1 -33.38 -30.86 -24.38 -14.34

m 9.8 -54.87 -52.36 -45.88 -35.84
6.1 -87.81 -85.29 -78.81 -68.77
3.8 -142.50 -140.00 -133.50 -123.50

TABLE 6.3B. ALPHA SQUARED (M-1 X 10-12) FOR LOW

FREQUENCY MODES

Frequency (o), s- 1 x 10-7
-2.22 -1.36 -0.85 -0.53 *206.30

7083.1 33.67 55.16 88.10 142.80 -0.59
209.1 31.15 52.65 85.58 140.30 -3.10

Equivalent 59.7 24.67 46.17 79.10 133.80 -9.58
Depth 28.4 14.63 36.13 69.06 123.80 -19.62
(H), 16.1 0.14 21.64 54.57 109.30 -34.11
m 9.8 -21.35 0.14 33.08 87.81 -55.60

6.1 -54.29 -32.79 0.14 54.87 -88.54
3.8 -109.00 -87.52 -54.59 0.14 -143.30

* changed the sign of co associated with mode 1
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Phase I consists of seven experiments. Each experiment will help determine

how the primitive equation model reacts to the analytical forcings derived in

Chapter II. The seven experiments are summarized in Table 6.4. The first three

experiments will determine the effects of a thermal forcing with different

equivalent heights (H) or frequencies (c). Experiments 4, 5 and 6 will determine

the effects of a vorticity forcing with different frequencies. Since the sign of co in

Experiment 5 is reversed, a2 is negative, and all Rossby waves should be trapped

near the source. The variable (x in Experiment 7 is a singular point in Eq. 2.15.

TABLE 6.4. PHASE I EXPERIMENTS

Experiment Thermal Forcing Vorticity Forcing Equivalent Depth
1 X 7083.1 m
2 X 209.1 m
3 X 59.7 m
4 X 7083.1 m
5 X *7083.1 m
6 X 209.1 m
7 X **209.1 m

* sign of co changed

**(a=r/W

1. Experiment 1

In this experiment ihe forcing function is only added to the thermal

equation (Eq. 3.4). The mean or equivalent height (H) in Eq. 2.12 is 7083.1 m.

which is exactly equal to the scale height of the first vertical mode (the barotropic

mode). The wave frequency (o) is -206.30 x 10- 7 s- l and the period is 3.5 days.

The wind velocity vectors for the lowest level (a= .938.) are displayed in Figs. 6.9

to 6.18. The scale of the wind vectors is shown in meters per second at the bottom

of each figure.
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In the first 24 hours it is evident that wavenumber three develops, since

there is one wave in each 120* sector. The circulation is confined to the latitudes of

the forcing. By 48 hours the overall magnitude of the vectors has increased, but

there still is not significant propagation into the tropics. At the 72 hour point the

magnitude of the wind vectors has decreased, and the circulation has pushed

southward toward the equator. The wave patterns move toward the west, but the

expected northeast-southwest tilt of Rossby waves is not present. By 96 hours the

overall magnitude of the wind vectors is at the minimum, and there is weak

circulation extending into the Southern Hemisphere. After 120 hours the overall

magnitude of the wind vectors has increased to the value at 24 hours, and the weak

circulation in the tropics is not evident.

A similar pattern of changes occur at 144, 168, 192, 216 and 240 hours.

The three-and-a-half day oscillation, or beat, of the overall velocity vector

magnitude is consistent with the three-and-a-half day period corresponding to the

frequency of the waves in this experiment; however, the beat frequency is not

consistent with the beta-plane theory. The oscillation in magnitude indicates the

wave pattern has not stabilized, and the time variation is not purely sinusoidal, as

assumed in the theory.

The circulation patterns in Figs. 6.9 to 6.18 do not propagate very far

north. The trapping of waves to the north may be due to an increase in the Coriolis

parameter on the beta-plane. As the Coriolis parameter (f) increases in Eq. 2.11,

a2 becomes more negative; consequently, the waves are trapped near the source

latitudes.

The wind vectors for the first vertical mode at 24 and 240 hours are

displayed in Figs. 6.19 and 6.20. At the 24-hour point, there is significant
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circulation in the tropics, but the magnitude is only one meter per second (one fifth

of the complete field shown in Fig. 6.9). This observation is consistent with theory,

in that it is difficult for a heating or mass source to force the barotropic mode (Lim

and Chang, 1987). After 240 hours, the overall magnitude of the wind vectors has

doubled. There is significant circulation south of the equator, but the desired

northeast-southwest tilt of propagating Rossby waves is not evident.
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Figure 6.19. Wind Vectors at 24 Hours for Phase I, Experiment 1,
Mode 1
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The pattern of the first baroclinic mode at 24 hours (Fig. 6.21) is similar to

the barotropic mode at 24 hours, but the overall magnitude of the wind vectors is

larger. This result is similar to Lim and Chang (1987). Lim and Chang found that

a heating source is more effective at forcing the higher order modes. The

circulation pattern and overall magnitude of the wind vectors of the first baroclinic

mode, after 240 hours (Fig. 6.22), is similar to the barotropic mode at 240 hours,

except the modes are 180' out of phase. The overall magnitude of the wind vectors

of the higher modes (not shown) are less than or equal to the magnitude of the

barotropic mode at 24 hours. According to theory, the barotropic mode is the only

mode with a propagating solution (when H = 7083.1 m). The results of this

experiment indicate all modes can propagate to some extent.
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2. Experiment 2

In this experiment the forcing function is again added to the thermal

equation, (Eq. 3.4) but the equivalent depth (H) is 209.09 m. This value of H

corresponds to the first baroclinic mode, which is mode two. The wave frequency

(o) is 26.13 x 10-7 s-1 and the period is 27.8 days. The wind vector fields for the

lowest level (Y = .938) at 24 and 240 hours are displayed in Figs. 6.23 and 6.24.

The patterns are not significantly different than Experiment 1. The overall

amplitude of the wind vectors is much larger than for Experiment 1. The beat

oscillation of the overall vector magnitude is not present, since the period is 27.8

days. The westward propagation is slower than in Experiment 1, also due to the

longer period. The overall magnitude of the wind vectors of the barotropic mode

at 24 hours (not shown) is one meter per second, whereas the overall magnitude of

the baroclinic wind vectors (not shown) is ten meters per second. The magnitudes

of the wind vectors of the higher modes are also on the order of the barotropic

mode at 24 hours. All the modes at later times show similar patterns and

magnitudes.
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3. Experiment 3

The forcing function of this experiment is added to the thermal equation

(Eq. 3.4), and uses an equivalent depth (H) of 59.748 m. The frequency (0) is

-8.04 x 10- 7 s-1 and the period is 90.4 days. The results are similar to Experiments

I and 2, except the overall magnitude of the velocity vectors is greater and the

westward propagation of the circulation patterns is slower. The magnitude of the

wind vectors of the barotropic mode is again much less than the baroclinic mode.

4. Experiment 4

In this experiment the forcing function is only added to the vorticity

equation (Es. 3.1). The equivalent height (H) in Eq. 2.12 is 7083.1 m, which is

the height of the barotropic mode. The frequency (wo) is -206.30 x 10- 7 s- 1 and the

period is 3.5 days. The wind vector fields for the lowest level (aT = .938) are

displayed in Figs. 6.25 to 6.34. The circulation patterns are substantially difterent

than when the source is added to the thermal equations in Experiments I through 3.

After 24 hours there is significant circulation moving toward the tropics. By 48

hours the flow has crossed the equator and has the northeast-southwest tilt

consistent with propagating Rossby waves. The 72 through 240 hour solutions

show the circulation continues to move toward the south. Notice again, that the

circulation does not move too far north. The overall magnitude of the vectors is

unrealistic at the end of the time period. The large magnitude is caused by the

arbitrary amplitude factor used in the forcing function. The results of this

experiment are more consistent with the midlatitude beta-plane theory than the

results of Experiments I through 3.
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Figure 6.30. Wind Vectors at 144 Hours for Phase I, Experiment 4

65



60N 60 N.!:..

30Th N 4s -4 30'Y4N

00 ~~7~W___a:'0L

6I* S 0I

0 9 0s
M,0 90wow 60w 300 w 0 a 30" E 600 E 90'E 120E

50.0

Figure 6.31. Wind Vectors at 168 Hours for Phase I, Experiment 4

0

60 S - 60 N

90 S 
9 -5

Iwo go w o 0 30 w a 3" E 60'E 90 E M'_ 50.0
Figure ~ ~ ~ ~ ~ ~ t 6.2 Win Vcosa19HorfoPhe1,Epimn

66 . -.



900 N : - 900 N

S60' N60"N -

,0 N300N3 0 0 N . . . .- " "N

O0~

30 "

60s - Hor 660 S

120W 90W 600 W  300 W 0 3 E  60 OE 0'E 120 E
-50.0
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The overall magnitude of the wind vectors of the barotropic mode at 24

hours (Fig. 6.35) is five times larger than the magnitude of the wind vectors of the

baroclinic mode at the same time (Fig. 6.36). The vorticity source is much more

efficient at forcing the barotropic mode.
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Figure 6.35. Wind Vectors at 24 Hours for Phase 1, Experiment 4,
Mode 1
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Mode 2

5. Experiment 5

This experiment is exactly the same as Experiment 4, except the sign of the
frequency (o) in Eq. 2.12 is changed. With a positive frequency (1O), 2 > 0 in

Eq. 2.26 and the circulation should be trapped near the source. The wind velocity

vect e 6.6 Winlector = .938) at 24 and 240 hours are displayed in

Figs. 6.37 and 638. The overall magnitude of the vectors is significantly smaller
than those of Experiment 4. However, the circulation did propagate past the

equator, but to a much less extent. The propagation is most likely due to fast

moving gravity waves. The modal analysis is consistent with the complete solution,

and the results of Experiment 4.
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6. Experiment 6

In this experiment the forcing is only added to the vorticity equation

(Eq. 3.1). The equivalent height (H) is 209.09 m, which is the height of the first

baroclinic mode. The frequency (w) is 26.13 x 1O s-1 and the period is 27.8 days.

The wind velocity vectors for the lowest level (a = .938) at 24 and 240 hours are

displayed in Figs. 6.39 and 6.40. The circulation patterns show a significant tilt

toward the southwest, but the circulation does not propagate significantly into the

Southern Hemisphere. The overall magnitude of the barotropic mode vectors (not

shown) is again much larger than the baroclinic mode vectors (not shown) at the

24-hour point.
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Figure 6.40. Wind Vectors at 240 Hours for Phase I, Experiment 6

7. Experiment 7

In this experiment the fo, "ing function is added to the vorticity equation

(Eq. 3.1). The equivalent height (H) in Eq. 2.12 is 209.09 m, which is exactly

equal to the first baroclinic mode. The variable a equals t / W, where W is half the

width of the forcing function in degrees latitude. This value of aX is a singular point

in the complete propagating solution (Eqs. 2.17 and 2.18). The wind velocity

vectors for the lowest level (a = .938) are displayed in Figs. 6.41 to 6.50.
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The overall magnitude of the wind vectors is approximately the same as in

Experiment 6, but the circulation pattern has more of a northeast-southwest tilt.

The frequency (o) of this forcing function is -3.05 x 10-7 s- 1 and the period is

238.6 days. The westward movement of the circulation pattern is much slower than

in Experiment 6, due to the longer period. The modal analysis is consistent with the

analyses of Experiments 4 through 6.

8. Phase I Summary

The results of Phase I indicate that forced Rossby wave forcings applied to

the thermal equation do not produce significant Rossby-type cold surge responses.

However, when the same forcings are applied to the vorticity equation, the

responses are consistent with Rossby-beta-plane theory. Forcing the thermal

equation consistently produces a stronger response in the baroclinic mode, and

forcing the vorticity equation produces a stronger barotropic response. When the

sign of the frequency (co) is changed, the solution does propagate southward. The

southward propagating solution is not consistent with Rossby wave theory. The

propagating waves in this case could be gravity waves since the overall magnitude

of the velocity vectors is small.

C. PHASE II RESULTS

The forcing functions of Phase II use the impulse function described in

Chapter V. The maximum amplitude of the forcing is at 24 hours and C = .375. In

each experiment the forcing is applied between 24" N and 36" N, and the model is

again integrated forward in time for 240 hours. The maximum amplitude of the

forcing occurs at 24 hours (as shown in Fig. 4.3), The two experiments of Phase I1

are summarized in Table 6.5. Experiments 8 and 9 will compare the effects of the

impulse forcing in either the thermal or vorticity equations.
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TABLE 6.5. PHASE II EXPERIMENTS
Experiment Thermal Forcing Vorticity Forcing

8 X
9 X

1. Experiment 8

In this experiment the impulse source is only added to the thermal equation

(Eq. 3.4). The wind velocity vector fields for the lowest level (a = .938) are

displayed in Figs. 6.51 through 6.60. After 24 hours a wavenumber three

circulation develops near the source latitudes. The overall magnitude of the

velocity vectors is relatively small and the circulation does not propagate very far

south. At 48 hours the magnitude increases and the circulation pattern moves

toward the west, but the circulation is still confined to the source latitudes. By 144

hours there is a slight northeasterly flow toward the equator. The magnitude of the

northeasterly flow does not significantly increase after 240 hours.
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Figure 6.51. Wind Vectors at 24 Hour. for Phase II, Experiment 8
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The overall magnitude of the velocity vectors of the barotropic mode (not

shown) is on the order of 0.5 m-s- 1 . The overall magnitude of the first baro-lnic

mode velocity vectors (not shown) is ten times greater. The larger baroclinic

response is consistent with Phase I. The circulation patterns of the modal analyses

are not significantly different than the total patterns shown in Figs. 6.51 through

6.60.

2. Experiment 9

In this experiment the impulse function is only added to the vorticity

equation (Eq. 3.1). The wind velocity vector fields for the lowest level (a= .938)

are displayed in Figs. 6.61 through 6.70. After 24 hours a wavenumber three

circulation develops and significant circulation patterns propagate toward the

equator. By 48 hours the magnitude doubles and the northeasterly flow intensifies.

By 72 hours there is significant flow past the equator. A definite northeast-

84



southwest tilt in the circulation pattern is evident at 96 hours This tilt is much

more pronounced than in Experiment 8. By 192 hours there are closed circulation

cells in the tropics. It is interesting to note that the circulation patterns of this

experiment also propagate north of the forcing region.
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Figure 6.61. Wind Vectors at 24 Hours for Phase 11, Experiment 9
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Figure 6.70. Wind Vectors at 240 Hours for Phase I, Experiment 9
The velocity vector patterns of the first and second modes are similar to

the complete vector patterns. The overall magnitude of the barotropic mode

vectors is ten times greater than the baroclinic mode vectors at 24 hours. The
larger response of the barotropic mode is consistent with the results of Phase 1.

3. Phase II Summary

The results of Phase II indicate that the thermal impulse forcing is not an

efficient method of producing a cold surge response. After 240 hours a small but

significant northeasterly flow develops, and circulation patterns are evident near

the equator; however, ten days is too slow to be realistic. The impulse forcing

applied to the vorticity equation does produce a significant, timely response. The

northeast-southwest tilt in the circulation patterns is similar to Bashford (1985) and

Lim and Chang (1981). The results are consistent with Phase I, in that the vorticity
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forcing is more efficient in exciting a barotropic response, and the thermal forcing

a baroclinic response.

D. PHASE III RESULTS

The forcing functions of Phase III use the generic cyclone described in

Chapter V. In each experiment the baroclinic zone is applied between 30 ° N and

60* N. This latitudinal range is representative of a synoptic wave moving through

the planetary wave over East Asia. The latitudinal structure of both the thermal

and vorticity forcing functions are shown in Fig. 6.71. The magnitude of each

forcing equals zero in the Southern Hemisphere and outside the source region. The

model is integrated forward in time for 240 hours. The maximum amplitude of the

forcings occur at the 24-hour and 216-hour points (Fig. 6.72). In the vertical, the

maximum amplitude of both thermal (Fig. 6.73) and vorticity forcings (Fig. 6.74)

occur at the surface. The three experiments in Phase III will determine which

forcing is dominant in the generation of cold surges. The experiments are

summarized in Table 6.6.

TABLE 6.6. PHASE III EXPERIMENTS
Experiment Thermal Forcing Vorticity Forcing

10 X X
11 X
12 X
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1. Experiment 10

In this experiment the forcing is applied to both the thermal (Eq. 3.4) and

vorticity (Eq. 3.1) equations. The wind velocity vector fields for the lowest level

(a = .938) are displayed in Figs. 6.75 through 6.84. After 24 hours a wavenumber

three circulation develops near the source latitudes and there is some propagation

toward the south. By 48 hours a five meters per second northeasterly wind, typical

of an East Asian cold surge, is evident to approximately 10* N. After 72 hours the

northeasterly flow extends past the equator into the Southern Hemisphere. The

northeast-southwest tilt in the circulation south of the source latitudes, and

northwest-southeast tilt north of the source is evident at this time. The tilted

circulation pattern is characteristic of propagating Rossby waves. The propagating

wave continues in this manner, and at 240 hours there is identifiable circulation at
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Figure 6.75. Wind Vectors at 24 Hours for Phase III, Experiment 10
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Figure 6.81. Wind Vectors at 168 Hours for Phase III, Experiment 10
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Figure 6.81. Wind Vectors at 168 Hours for Phase III, Experiment 10

97



.. .. . 60

0' N .3.0 N

30 S  -0 " " " . " - - 90- S
60 s 60's--

i20° w go w  60' W  30' W  0 .30' E  60' E  90' E  I20 E

20.0

Figure 6.82. Wind Vectors at 192 Hours for Phase III, Experiment 1030 N 0

*o :. - : .- -I"~ ,, °

30 .9 30

60, S 90 - )

120W w 00pw 6&*w 30' W 0 30"E 60 tE 90 0E 120C E
-20.0

Figure 6.82. Wind Vectors at 212 Hours for Phase 111, Experiment 10
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Figure 6.83. Wind Vectors at 216 Hours for Phase III, Experiment 10
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Figure 6.84. Wind Vectors at 240 Hours for Phase Ill, Experiment 10

The barotropic (Fig. 6.85) and baroclinic (Fig. 6.86) mode analyses at 24

hours show similar circulation patterns as the complete solution at 24 hours. The

overall magnitude of the barotropic mode vector field is five times larger than the

baroclinic vector field. The larger barotropic response suggests the vorticity

forcing is dominant in the generic cyclone. The higher modes have similar

circulation patterns, but the overall magnitude of the vector field is much smaller.
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2. Experiment 11

In this experiment the forcing is only applied to the thermal equation

(Eq. 3.4). After 24 hours a wavenumber three circulation develops in the lowest

level (cY = .938), but the circulation is rather chaotic (Fig. 6.87). The circulation

remains trapped for the whole time period. After 240 hours (Fig. 6.88) the

sinusoidal circulation pattern is still within the source latitudes. It is apparent that

the thermal forcing does not play a significant role in producing cold surges in this

model. The overall magnitude of the baroclinic mode vector field at 24 hours (not

shown) is four times larger than the magnitude of the barotropic field. The larger

baroclinic response is similar to the results of Phase I and II.
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Figure 6.87. Wind Vectors at 24 Hours for Phase III, Experiment 11
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3. Experiment 12

In this experiment the forcing is only applied to the vorticity equation

(Eq. 3.1). Since the vorticity forcing is dominant, and the thermal forcing does

not propagate away from the source, the circulation patterns and magnitudes are

not significantly different than the combined thermal and vorticity forcing of

Experiment 11.

4. Phase III Summary

The results of Phase III indicate the vorticity forcing is the dominant

component in the nonlinear interaction of a planetary wave and a synoptic-scale

generic cyclone. The thermal-only forcing does not propagate away from the

source and is less intense than the vorticity-only forcing. The vorticity forcing

(and thus the combined thermal and vorticity forcing) does produce a northeasterly

wind within 48 hours, which is typical of East Asian cold surges. The northeasterly
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flow continues into the Southern Hemisphere, which suggests a tropical response to

a midlatitude forcing (Lim and Chang, 1987).
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VII. CONCLUSION

The objective of this study was to determine whether the nonlinear interaction

between a planetary-scale wave (wavenumber four) and a rapidly growing

synoptic-scale wave (wavenumber seven) could force a northeasterly cold surge.

The nonlinear interaction of these waves produced a wavenumber three forcing.

The basic model was a linearized global spectral model with eight levels. Fourteen

experiments with three different types of source functions were applied to the

thermal and/or vorticity equations. The solutions of each experiment were

projected onto the vertical normal modes of the primitive equation model.

The results of each phase of the experiments indicate a midlatitude thermal

forcing does not produce a significant cold surge response. The impulse forcing,

similar to Lim and Chang (1981), applied to the thermal equation produced a weak

cold surge response after 240 hours; however, ten days is longer than the typical

two-day surge generation period observed in the East Asian winter monsoon. The

difference between the equatorial beta-plane model used by Lim and Chang (1981 ),

and the spherical primitive equation model used in this study will require further

explanation. However, the thermal forcing consistently produced a stronger

response in the baroclinic mode.

The midlatitude vorticity forcing, on the other hand, produced a stronger

response in the barotropic mode. The wavenumber three vorticity forcing

produced a significant cold surge response within 48 hours. The cold surge

produced by the vorticity forcing is consistent with the observed cold surge in the

East Asian winter monsoon.
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The lack of cold surge response to a midlatitude thermal forcing. and the

significant response to a midlatitude vorticity forcing may be explained by

geostrophic adjustment theory. In midlatitude geostrophic adjustment the wind

field tends to adjust to the mass field. Thus, when the forcing is prescribed by

heating, the local adjustment (to rotational motion) is more complete. When the

forcing is prescribed by vorticity, the adjustment wil! be less efficient and a

considerable amount of energy will propagate away in divergent motion. The

equatorward propagation studied by Lim and Chang's (1981) theory is through

equatorial Rossby waves that have a significant divergent component. Thus, the

divergent motion may offer a possible explanation for the different responses to

the two types of forcings.

The initial condition of this study did not include any basic current (mean

flow). In reality, the cold surge is superimposed on an existing northeasterly

monsoonal flow at the surface. It would be interesting to see if the presence of an

initial mean flow would alter the results of the forcings. Also, the nonlinear effects

of topographic channeling play an important role in the cold surge response. Using

some type of topographic barrier may lead to interesting conclusions.
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